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Abstract The significance of air quality monitoring for analyzing the impact on public health is growing worldwide. A crucial 

part of smart city development includes deployment of suitable air pollution sensors at critical locations. Note that there are 

various air quality measurement instruments ranging from expensive reference stations that provide accurate data to low-cost 

sensors that provide reasonable air quality measurements. In this research, we use a combination of sensors and monitors, 10 

which we call as hybrid instruments and focus on optimal placement of such instruments across a region. The objective of the 

problem is to maximize a satisfaction function that quantifies the weighted closeness of different regions to the places where 

such hybrid instruments are placed (here weights for different regions are quantified in terms of the relative population density 

and relative PM2.5 concentration). Note that there can be several constraints such as those on budget, minimum number of 

reference stations to be placed, set of important regions where at least one sensor should be placed and so on. We develop two 15 

algorithms to solve this problem. The first one is a genetic algorithm that is a metaheuristic and works on the principles of 

evolution. The second one is a greedy algorithm that selects locally best choice in each iteration.  We test these algorithms on 

different regions from India with varying sizes and other characteristics such as population distribution, PM2.5 concentration, 

budget available, etc. The insights obtained from this paper can be used to quantitatively place reference stations and sensors 

in large cities rather than using ad hoc procedures or rules of thumb.  20 

1 Introduction 

According to the World Health Organization (WHO), ambient air pollution is a significant threat to people's health, causing 

around 6.7 million premature deaths annually in 2019 (Fuller et al., 2022). Shockingly, 99% of the global population resides 

in areas that don't meet WHO's air quality guidelines, with 89% of these premature fatalities occurring in low or middle-income 

countries (WHO, 2022; Pandey et al., 2021). To address this issue, it's crucial to develop suitable sensor networks by putting 25 

the air pollution monitors or sensors at appropriate locations, meeting the requirements of various groups in the city, and 

providing the much-needed information. Air pollutant concentrations have traditionally been monitored using reference 

stations (we will refer to them as monitors in this paper) which are highly accurate but also very costly, limiting their 

widespread deployment (Lagerspetz et al., 2019). To achieve accurate air pollution monitoring within metropolitan regions, 
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hundreds or even thousands of reference stations are required, which proves costly to maintain and operate (Zikova et al., 30 

2017). However, the emergence of low-cost air quality sensors presents an opportunity for higher-density deployments and 

improved spatial resolution in monitoring (Spinelle et al., 2017; Castell et al., 2017). Low-cost sensors offer a cost-effective 

solution, reducing installation and maintenance expenses and facilitating broader spatial coverage, particularly in remote areas. 

Therefore, in order to balance the accuracy of monitoring along with costs involved in such instruments, we will consider 

deployment of both monitors and sensors in this paper. 35 

 

Some studies focus on optimizing air quality monitoring networks (AQMNs) using different models: physical models (Araki 

et al., 2015; Hao and Xie, 2018) and learning-based models (Hsieh et al., 2015). However, the accuracy of these methods relies 

heavily on the precision of the air quality models, and both Hao and Xie (2018) and Hsieh et al. (2015) required existing air 

quality measurements as inputs for their prediction models which largely depend on the quality and completeness of input 40 

data. The studies by Li et al. (2017), Brenzia et al. (2015), and Zikova et al. (2017) discuss ad-hoc placement of air quality 

sensors in their respective study regions or using some rules of thumb. But this shows that the placement of sensors is not 

optimized under the budget constraints that might be present. To address these challenges, it becomes crucial to develop more 

strategic approaches for placing air quality sensors. Properly optimized sensor placement can lead to a more comprehensive 

and accurate understanding of air pollution patterns, facilitating targeted pollution control measures and ultimately improving 45 

public health and environmental management. 

 

Lerner et al. (2019) presents a method for optimizing sensor placement based on sensor characteristics and land use analysis. 

Sun et al. (2019) also proposes an optimal sensor placement strategy based on population density without relying on air 

pollution data. Their study highlights that humans naturally depend on the closest station to observe and obtain relevant 50 

information regarding the environment when multiple stations are present in a city. The satisfaction regarding the information 

increases as one moves closer to the adjacent station. Unlike Lerner et al. (2019), Sun et al. (2019) represent the benefit of 

placing a sensor in a particular grid to the citizens not just living in that grid but also to those living the nearby grids. However, 

Sun et al. (2019) has limitations that it does not incorporate air pollution data as a parameter in optimization, which raises 

concerns about the accuracy and reliability of the obtained results. Furthermore, both Lerner et al. (2019) and Sun et al. (2019) 55 

only consider deployment of one type of sensor but as we discussed in the previous-to-previous paragraph, both monitors (that 

are very accurate) and sensors (that are not that accurate but much more economical than monitors) should together be 

considered for deployment.  

 

In this paper, we propose deploying a combination of low-cost sensors (referred to as sensors) and reference stations (referred 60 

to as monitors), termed hybrid instruments, in a specific region. Note that Castell et al. (2017) also highlighted that sensors 

alone may not provide accurate air quality measurements as compared to reference instruments or monitors. Our proposed 

approach aims to leverage the strengths of both sensors and monitors to enhance air quality monitoring in a cost-effective 
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manner. We refer to the combination of sensors and monitors as hybrid instruments. We propose to develop a framework for 

placing hybrid instruments with the objective of maximizing the public satisfaction by considering emission spread and 65 

population density as parameters (while considering the benefit of placing instruments in nearby grids also and not just the 

grids where they are placed). Also, several noble constraints such as having at least one sensor in a given set of important grids 

(like important residential or commercial areas), not having monitors in certain given grids (like places with sparse population, 

water bodies, etc.), having a minimum number of grids where monitors should be placed in the network, etc., have been 

proposed in the optimization formulation. Therefore, following are the contributions of our work:  70 

• Our research focuses on optimal deployment of hybrid air-quality monitoring networks consisting of monitors and 

sensors where the goal is to maximize public satisfaction by providing accurate air quality information while 

considering several budget and other constraints. 

• We propose a Genetic algorithm (GA) and a greedy algorithm (GrA) to solve the developed optimization problem. 

• We test the developed algorithms on networks of varying sizes and geographic locations. 75 

This paper's remaining sections are organized as follows: Section 2 describes the optimization problem and presents the 

algorithms for solving the problem. Next section provides the numerical results tested using different algorithms under 

different settings. The final section concludes our study and provides future directions. 

2 Methodology 

This section is divided into two parts. The first part describes the problem statement for optimization of hybrid instrument 80 

network. The second part describes the methods proposed to solve the optimization problem. The second part is further sub-

divided into two sub parts: GA and GrA respectively. 

2.1 Problem Statement 

The approach focuses on the utility gain of placement of sensors as per people satisfaction. Realising that humans naturally 

depend on the closest station to observe and obtain relevant information regarding the environment when multiple stations are 85 

present in a city, we assume that an individual's satisfaction 𝑔(𝑑) with a sensor deployment system is a function of his or her 

distance to the closest sensor 𝑑 (Sun et al., 2019). Intuitively, the satisfaction with the information increases as one moves 

closer to the adjacent station. Therefore, 𝑔(𝑑) must satisfy the following conditions as stated in Sun et al. (2019): (i) 𝑔(𝑑) be 

a strictly decreasing function, i.e., for any 𝑑1 ≤  𝑑2, 𝑔(𝑑1) ≥  𝑔(𝑑2), (ii) for any 𝑑 ≥  0, 𝑔(𝑑) ≥  0 and 𝑔(0) =  1. The 
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foremost condition corresponds to the relation of satisfaction function with distance, while the latter ones assure the fact that 90 

the 𝑔 𝜖 [0, 1] and 𝑔 is the highest when the distance is zero. The following exponentially decreasing function 𝑔(𝑑) readily 

satisfies the aforementioned conditions (Sun et al., 2019): 

𝑔(𝑑) = exp (−
𝑑

𝜃
),                                    (1) 

where 𝜃 is an exponential decay constant. In accordance with the standard procedure for environmental monitoring (Krause et 

al., 2008, Hsieh et al., 2015), we divide the city into distinct, equal-sized square grids. Then, we place our hybrid instruments 95 

(sensors and monitors) in these fragmented grids. Let 𝑉 =  {𝑎|𝑎 =  1, 2 … , 𝑛} represent a set of grids in the interested 

geographical area, in which 𝑛 =  |𝑉|  represents the total number of grids. For each 𝑎 ∈ {1, 2 … , 𝑛}, let 𝑝𝑎 represent the 

percentage of people living in grid 𝑎, 𝑒𝑎 represents the percentage of PM2.5 emissions in grid 𝑎 and 𝑚𝑎   denotes the average of 

𝑝𝑎 and 𝑒𝑎 of grid 𝑎 i.e.,  𝑚𝑎 =
𝑝𝑎+𝑒𝑎

2
. Note that both population density and PM2.5 emission percentage are important factors 

while deciding the relative importance of various grids. Population density reflects the concentration of people residing in that 100 

grid, while the PM2.5 emission indicates the level of fine particulate matter in the air in that grid. Averaging the corresponding 

percentage values of these parameters provides a single value that quantifies the importance of a particular grid and allows 

comparing between different grids.  

 

We will now introduce some variables to define the optimization formulation. Let 𝑆 be a set of grids where instruments (sensors 105 

and monitors) are placed (i.e., set 𝑆 consists of all grids 𝑎 such that 𝑧𝑎 = 1). The notations are summarized in Table 1 of 

appendix. For each 𝑎 ∈ {1, 2 … , 𝑛}, let 𝑥𝑎  be equal to one, if a sensor is placed at grid  𝑎 otherwise it is equal to zero, 𝑦𝑎 be 

equal to one if a monitor is placed at grid 𝑎, otherwise it is equal to zero and 𝑧𝑎 be equal to one if any instrument is placed at 

grid 𝑎, otherwise it is equal to zero. Let 𝑐 be the cost of a sensor, 𝑐′ be the cost of a monitor and 𝑃 be the total available budget. 

Let 𝐵 be the set of grids where at least one sensor should be placed. Let 𝐶 be the set of grids where monitor cannot be placed. 110 

Let ℎ be the minimum number of monitors that should be deployed. Let 𝑀 be a very large positive number and 𝑚 be a very 

small positive number. The formulation for optimally placing hybrid instruments is as follows:  

  

                                Max ∑ 𝑚𝑎. 𝑔(𝑑(𝑎))𝑛
𝑎=1  (2) 

                         s.t.  ∑ (𝑐𝑥𝑎 + 𝑐′𝑦𝑎)  ≤ 𝑃𝑛
𝑎=1  (3) 

                                ∑ 𝑥𝑎 ≥ 1𝑎 𝜖 𝐵  (4) 

                                ∑ 𝑦𝑎 = 0𝑎 𝜖 𝐶  (5) 

                                ∑ 𝑦𝑎 ≥ ℎ𝑛
𝑎=1  (6) 

                                𝑀𝑧𝑎 + 𝑚 ≥ 𝑥𝑎 + 𝑦𝑎 , ∀ 𝑎 =  1,2, … , 𝑛       (7) 

                                𝑥𝑎 + 𝑦𝑎 ≥ 𝑧𝑎 , ∀ 𝑎 =  1,2, … , 𝑛 (8) 
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where 𝑑(𝑎) = min
𝑏 𝜖 𝑉

 {𝑧𝑏 . 𝑑(𝑎, 𝑏) +  𝑑(𝑎). (1 − 𝑧𝑏)} and 𝑑(𝑎) = max
𝑏 𝜖 𝑉

 𝑑(𝑎, 𝑏). 115 

The objective is to choose a subset of grids 𝑆 ⊆ 𝑉 that maximizes the overall satisfaction percentage under given constraints. 

Here, 𝑑(𝑎) is the minimal distance between grid 𝑎 and set 𝑆 (assuming that 𝑆 is not an empty set, which is the case because of 

the constraint in Equation (4)). The condition in Equation (3) is the budget constraint which states that the total cost of all 

instruments cannot exceed 𝑃. The condition in Equation (4) ensures that a sensor is placed in at least one of the grids belonging 

to the set 𝐵. Equation (5) ensures that no monitor is placed at any grid belonging to the set 𝐶 (these grids can belong to locations 120 

like open areas, waterbodies, etc.). The condition in Equation (6) ensures that at least ℎ number of monitors are deployed. 

Equations (7) and (8) are the definitional constraints for variable 𝑧𝑎. That is, they ensure that for each grid 𝑎,  𝑧𝑎 is equal to 

one if 𝑥𝑎 + 𝑦𝑎 ≥ 1 otherwise, 𝑧𝑎  is equal to zero. 

2.2 Methods 

We will now present different algorithms to solve the proposed formulation. We will first introduce Genetic Algorithm (GA).  125 

2.2.1 Genetic Algorithm 

A Genetic Algorithm is a metaheuristic that is inspired by the natural selection process and genetics (Deb, 2001). It mimics 

the principles of survival of the fittest, crossover, and mutation to iteratively search for optimal solutions. The algorithm starts 

by creating an initial population of potential solutions, represented as strings or individuals. Consider a string comprising of 

2𝑛 elements (𝑛 is the total number of grids), with the first 𝑛 elements for the placement of sensors and the next 𝑛 elements is 130 

for the placement of monitors. Each element in the string can take a value of either 0 or 1, where 1 indicates the presence of a 

sensor or monitor (depending on whether we are looking in the first 𝑛 or last 𝑛 elements) in the corresponding grid, and 0 

indicates the absence. We now consider a modification of the above string where we remove the elements that correspond to 

monitors belonging to set 𝐶 . The removed elements will always have value equal to zero due to the definition of set 𝐶 

(consequently, monitors will not be placed on the grids belonging to the 𝐶 set) and thus they are separated so that the values 135 

of these elements do not change due different processes in GA. The aforementioned modified string is used in our problem. 

Each string encodes a set of decision variables, representing a candidate solution to the problem.  

 

We define a fitness metric that is used to assign a relative merit (fitness) to each solution based on the corresponding objective 

function value and constraint violations. The fitness, 𝐹(𝐻), of any string 𝐻 is calculated as follows: 140 

 

𝐹(𝐻) = {
𝑓𝑛                                              𝑖𝑓 𝐻 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙 𝑠𝑡𝑟𝑖𝑛𝑔
𝑓𝑛𝑚𝑖𝑛 −  𝐷1 − 𝐷2 − 𝐷3       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

 
(9) 

 

    Where,  𝐷1 = { 
0                                                ∑ (𝑐𝑥𝑎 + 𝑐′𝑦𝑎)  ≤ 𝑃𝑛

𝑎=1

∑ (𝑐𝑥𝑎 + 𝑐′𝑦𝑎) − 𝑃𝑛
𝑎=1          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

 
      (10) 
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                 𝐷2 = {
 0                                                ∑ 𝑥𝑎 ≥ 1𝑎 𝜖 𝐵                       
1                                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

 
(11) 

                 𝐷3 = { 
0                                                ∑ 𝑦𝑎 ≥ ℎ𝑛

𝑎 =1   

ℎ − ∑ 𝑦𝑎                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   𝑛
𝑎 =1

 
(12) 

 

 

Here, 𝑓𝑛 is the objective function value for string 𝐻 as obtained by Equation (2), 𝑓𝑛𝑚𝑖𝑛 is the minimum value of objective 

function values over all the feasible solution strings in a given population of strings, and 𝐷1, 𝐷2  and 𝐷3 are penalty values for 145 

violating constraints in Equation (3), (4) and (6), respectively. Note that there is no penalty value for violating the constraint 

in Equation (5) as that is automatically satisfied due to the way we define our strings (recall that we removed the elements 

corresponding to the grids of set 𝐶). 

 

In each generation (or iteration) of GA, the Roulette Wheel Selection (RWS) is used to select solutions from a population 150 

based on their fitness values (Deb, 2001). RWS provides a proportional selection mechanism where fitter solutions have a 

higher probability of being selected, but it still allows weaker solutions to have some chance of being chosen. After the 

selection procedure, crossover procedure is followed where two strings are randomly selected from the mating pool, and a 

partial interchange from both strings is done to generate two new strings. We use the two-point crossover operator where two 

distinct crossover points divide the strings into three substrings and the middle substring is exchanged between the strings 155 

(Deb, 2001). After crossover, mutation procedure is carried where the mutation operator alters 1 to 0 or vice versa in each 

element of a string with probability 𝑃𝑚  (referred to as the mutation probability). Note that mutation helps in maintaining 

diversity in the population. After applying the genetic operators, parent population and offspring population are combined, 

strings in the combined population are sorted in non-increasing order and the top half of the combined population is selected 

as the population for the next generation. This process is repeated over multiple iterations or generations until the termination 160 

criteria (to be specified next) is met. We now describe the termination criteria. Let the average fitness value of strings in the 

population of 𝑖th iteration or generation be 𝑘𝑖. Let 𝑁 be the maximum number of iterations of GA that are allowed. Then, the 

algorithm stops at the end of the 𝑖th iteration if |
𝑘𝑖−𝑘𝑖−1

𝑘𝑖−1
| ≤ 𝛼 (where 𝛼 is a given value) or if 𝑖 becomes equal to 𝑁. 

   

2.2.2 Greedy Algorithm 165 

The second method to solve the optimization problem from Section 2.1 is a Greedy Algorithm (GrA). A GrA iteratively comes 

up with a solution by making choices that are locally optimal in each iteration but it is not guaranteed to produce an optimal 

solution. In this algorithm, we first place a sensor at one of the locations from set 𝐵 to satisfy Equation (4). This placement is 

done by selecting the grid with the highest 𝑚𝑎 among the set 𝐵. Then, we find the placement location for ℎ monitors to satisfy 

Equation (6) by ensuring that Equation (5) (which tells us about the grids where monitors can’t be placed) is not violated. We 170 
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now define grid location 𝑠∗ with largest information gain as 𝑠∗  =  ∑ 𝑚𝑎 (𝑔(𝑑′(𝑎, 𝐾 ∪ 𝑠)) − 𝑔(𝑑′(𝑎, 𝐾)))𝑛
𝑎=1  where 𝐾 is the 

set of grids that have either a sensor or a monitor already placed (note that 𝐾 is not an empty set because we have at least one 

grid belonging to set 𝐵 that has a sensor placed) and 𝑑′(𝑎, 𝐾) represents the minimum distance between grid 𝑎 and set 𝐾. The 

placement of ℎ monitors is done by repeatedly choosing the grid location with largest information gain 𝑠∗. Let 𝑃′ = 𝑃, where 

𝑃′ is the budget that remains after we reduce the cost of different instruments that are placed in different iterations of GrA. 175 

After the placement of one sensor plus ℎ monitors, the available budget 𝑃′ = 𝑃 − 𝑐 − ℎ𝑐′. After satisfying Equation (6), there 

is no benefit of placing more monitors that are costly and thus we target to place sensors. We keep placing sensors such that 

the grid location with the largest information gain 𝑠∗ is selected while ensuring that 𝑃′ is updated with every placement of 

sensor and budget constraint is satisfied.  

3 Results 180 

In this section, we will present results by testing our proposed algorithms in different settings. Our algorithms have been 

employed in two distinct areas within Surat and Mumbai cities. Both algorithms were implemented in MATLAB and executed 

on computer with Intel® Core™ i7-2600 processor and 8 GB RAM.  

3.1 Surat City 

We first consider a portion of Surat which a major city in the state of Gujarat, India, for optimal placement of air quality 185 

instruments. In this study, we take a pilot project area of 5 km x 5 km in Surat and divide it into 25 grids (thus each grid is of 

the size 1 km x 1 km). For calculating the optimal locations for hybrid instruments, we use the average percentage of population 

density (World Bank provides population density data at a spatial resolution of 1 km x 1 km) and PM2.5 emission data (The 

Energy and Resources Institute (TERI) provides PM2.5 emission data for Surat city at a spatial resolution of 1 km x 1 km) for 

the part of Surat city that we focus.  190 

 

https://doi.org/10.5194/amt-2023-173
Preprint. Discussion started: 13 September 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

 

Fig 1. Hybrid sensor placement obtained by GA (left) and GrA (right) for the Surat network with budget value of $313000. © Google 

Maps 2023. 

 195 

Figure 1 displays the placement locations of sensors (purple points) and monitors (orange points) in Surat city as obtained by 

Genetic algorithm (left) and Greedy algorithm (right). The parameter values that are used in this placement are as follows: cost 

of a sensor (𝑐) is $3000, cost of a monitor (𝑐′) is $122000, total available budget (𝑃) is $313000, value of 𝜃 and ℎ are 1 and 2 

respectively. The GA parameters that are used are as follows: population size is equal to 1000, mutation probability (𝑃𝑚) is 

equal to 0.1, maximum number of iterations or generations is 500 and value of 𝛼 is 10−5.  200 

 

Figure 2 shows the values obtained and computational time for the two algorithms, considering different total available budgets 

(i.e., 𝑃). The minimum budget that is considered is $253,000, which is equal to the cost of three sensors plus ℎ monitors. The 

maximum budget in Figure 2 is $313,000, which allows for the placement of 2 monitors and 23 sensors, covering the entire 

portion area (as there are a total of 25 grids) under minimum possible budget as at least 2 monitors need to be placed by 205 

Equation (6).  
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Fig 2. Plot comparing genetic vs greedy algorithms for varying total available budget values. 

 210 

 

From Figure 2, it can be observed that, for most budget points, the obtained value is higher for GrA compared to GA, except 

for the $313,000 budget where both algorithms yield the same value. Also, note that the obtained values for both the algorithms 

increase with the increase in budget because it is possible to place more instruments with the increase in budget and that results 

in increase in the overall satisfaction function value. Note that the computation time of GA is significantly larger than that of 215 

GrA because GA samples through a set of possible solutions and iteratively applies various operators such as selection, 

crossover and mutation whereas GrA is a deterministic algorithm that comes up with a single solution. 

 

3.2 Mumbai City 

We now present the results that we tested for portions of the Mumbai, which is the financial hub of India. In this case, we only 220 

considered the contribution of population in the objective function (i.e., 𝑚𝑎 = 𝑝𝑎) due to unavailability of PM2.5 emission data 

for Mumbai city. However, the aforementioned change does not have any significant issue on the results that we present as we 

plan to test the effect of varying the budget (as in the last section) and the effect of varying the size of the network (i.e., the 

number of grids). All the parameter values for the algorithm's execution were maintained consistently as above in Surat city, 

except for the variable 𝜃, which has now been set to 5 (note that 𝜃 has been increased now because we have larger number of 225 

grids in Mumbai network as compared to Surat, resulting in higher average distances between the grids for the Mumbai network 

and thus we need to update 𝜃 for better normalization). Consider a region of size 10 km x 10 km in Mumbai City that has been 

divided into 100 grids (i.e., each grid is of the size 1 km x 1 km). Figure 3 shows the variation of values obtained and 
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computation time with total available budget for GA and GrA for this region. The solid lines represent the obtained values and 

dashed lines are used to represent the computation time in seconds for different algorithms. It can be seen that the genetic 230 

algorithm (GA) provides higher value as compared to the greedy algorithm (GrA) for most of the cases, which is opposite to 

that observed in the previous section. Thus, it highlights the importance of GA in obtaining values that are closer to the optimal 

as compared to GrA when the network size increased (however this advantage comes at the high computational cost of GA as 

compared to GrA).  

 235 

 

Fig 3. Plot comparing genetic vs greedy algorithm for varying total available budget values. 

 

Figure 4 shows us the placement of hybrid instruments obtained for the two algorithms (GA and GrA) when the budget is 

equal to $283000 when we have all the parameters the same as that in Figure 3. The blue and orange points represent the 240 

placement of sensors and monitors, respectively. From Figure 4b that represents the hybrid sensor placement by GA, it is 

evident that sensors and monitors are mainly concentrated in the bottom-leftmost region. In contrast, Figure 4a shows a more 

diverse or scattered distribution of sensors and monitors. It is because GA samples through various solutions to procced towards 

a solution is closer to the optimal whereas GrA is a deterministic algorithm and may get stuck near a locally optimal solution. 

 245 
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Fig 4. Sensor placement obtained by GA (left) and GrA (right) for 10 km x 10 km (100 grids) region in Mumbai when the budget is 

equal to $283000. © Google Maps 2023. 

 

 250 

 

Fig 5. Plot comparing genetic and greedy algorithms for varying number of grids. 

 

Figure 5 shows the comparison between GA and GrA with varying number of grids for the budget value of $283000. The solid 

lines represent the obtained values in percentage for different algorithms and dashed lines are used to represent the computation 255 

time in seconds for different algorithms. As the number of grids increases, there is a noticeable decline in citizen satisfaction 
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(i.e., the obtained values) because the budget 𝑃 remains the same and thus the satisfaction averaged across all the grids reduces 

as it gets distributed across the total region (note that the percentage of population in each grid also reduces as the number of 

grids increase and thus that also contributed to the observed trend). Also, the values obtained by GA and GrA are similar and 

in some cases GA outperforms GrA whereas the reverse happens in other cases. Note that the computation time required for 260 

GA increases rapidly with the increase in the number of grids because with the increase in the number of grids, the size of each 

string in GA increases and it takes more iterations before the termination criterion is reached in GA (as the number of feasible 

solutions increase with the increase in grid size). However, the increase in the computational time of GrA is not that high as it 

is a polynomial-time algorithm (Cormen et al., 2022), i.e., the computational time increases polynomially with respect to the 

increase in the problem size (i.e., the number of grids in our problem).   265 

4 Conclusions 

This research paper proposed an optimization formulation for placement of hybrid instruments (sensors and monitors). The 

objective of the problem is to maximize the satisfaction function while satisfying various constraints for the placement. To 

solve this formulation, we proposed two algorithms: a genetic algorithm (GA) which is a metaheuristic that works using the 

principles of evolution and a greedy algorithm (GrA) that makes choices that are locally optimal in each iteration. We tested 270 

the placement solutions generated by these algorithms on networks from different locations (Surat and Mumbai) that differed 

over sizes and characteristics (population distribution, budget and PM2.5 distribution). We observed that as the total available 

budget increased, the obtained values from the two algorithms also increased as it became possible to place more instruments 

(sensors and monitors). We found that GrA is very computationally efficient as compared to GA, but we found that both GrA 

and GA provided close values when the number of grids were large (in some cases GA outperformed GrA whereas in other 275 

cases the reverse happened). Note that since GA searches through a set of solutions over multiple iterations and uses operators 

like mutation it has a better likelihood of getting towards the optimal solutions whereas GrA may get stuck near a local optimum 

in some cases. These findings suggest that if time is not constrained (i.e., we have a few days to decide the placement solution) 

it might be better to use GA and GrA together (i.e., use the best solution out of the two algorithms) to place the instruments 

whereas in scenarios where there is scarcity of time, it is advised to use GrA. Our research aims to provide valuable insights 280 

for future government decision-making processes regarding the optimal deployment of hybrid instruments in cities lacking an 

existing sensor network. But there are several interesting future extensions of this work that are possible. For instance, we 

assumed a particular form of the satisfaction function (consisting of exponential terms) but other forms can also be tested. 

Similarly, other factors apart from population density and PM2.5 concentration such as socio-economic disparities across 

various grids can also be factored while determining the satisfaction function. 285 
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Appendix 

Table 1 

Notations Description 

𝑉 Set of all grids  

𝑛 Total number of grids 

𝑆 Set of grids selected for deploying hybrid instruments 

𝑔(𝑑) A function of 𝑑 

𝜃 Exponential decay parameter 

𝑝𝑎 Percentage of population living in grid 𝑎 

𝑒𝑎 Percentage of concentration of PM2.5 in grid 𝑎 

𝑚𝑎 Average of 𝑝𝑎 and 𝑒𝑎 

𝑐  Cost of each sensor 

𝑐′ Cost of each monitor 

𝑃 Total available budget 

ℎ Minimum number of monitors to be deployed 

𝑧𝑎 Binary variable signifying whether a sensor or a monitor is placed at grid 𝑎 or not 

𝑥𝑎 Binary variable signifying whether a sensor is placed at grid 𝑎 or not 

𝑦𝑎 Binary variable signifying whether a monitor is placed at grid 𝑎 or not 

𝐵 Set of grids where at least one sensor is to be placed 

𝐶 Set of grids where monitors cannot be placed 

𝑀 A very large positive number 

𝑚 A very small positive number 

𝑃𝑚 Mutation probability 

𝑁 Maximum number of iterations of GA that are allowed 

𝑑(𝑎) Minimum distance between grid 𝑎 and the grids containing hybrid instruments 

𝑑(𝑎, 𝑏) Distance between grid 𝑎 and grid 𝑏 

𝑑(𝑎) Maximum distance between grid 𝑎 and any other grid of set 𝑉 

𝑑′(𝑎, 𝐾) Minimum distance between grid 𝑎 and set 𝐾 
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